Demo & Step by Step Guide

Creating SSAS Tabular Data Models

By: Wylie Blanchard
Table of Contents

Creating a Data Model (SSAS Tabular)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a New Tabular Model Project</td>
<td>3</td>
</tr>
<tr>
<td>To create a new tabular model project</td>
<td>3</td>
</tr>
<tr>
<td>Create a Connection and Import Data</td>
<td>4</td>
</tr>
<tr>
<td>Connect to our datasource</td>
<td>4</td>
</tr>
<tr>
<td>Save the Model Project</td>
<td>7</td>
</tr>
<tr>
<td>To save the model project</td>
<td>8</td>
</tr>
<tr>
<td>Review Existing Relationships and Add New Relationships</td>
<td>8</td>
</tr>
<tr>
<td>To add new relationships between tables</td>
<td>8</td>
</tr>
<tr>
<td>To review existing relationships</td>
<td>9</td>
</tr>
<tr>
<td>Create a Calculated Column</td>
<td>10</td>
</tr>
<tr>
<td>Create a Month Calendar calculated column in the Patients table</td>
<td>10</td>
</tr>
<tr>
<td>Create additional calculated columns in the indicated table(s):</td>
<td>11</td>
</tr>
<tr>
<td>Create a Measure</td>
<td>11</td>
</tr>
<tr>
<td>To create a Daily Average Number of Claims measure in the Claims table</td>
<td>12</td>
</tr>
<tr>
<td>Create additional measure(s):</td>
<td>12</td>
</tr>
<tr>
<td>You can copy and paste the content in the “Formula” column below</td>
<td>12</td>
</tr>
<tr>
<td>Create Key Performance Indicators</td>
<td>13</td>
</tr>
<tr>
<td>To create a Daily Average Claims Performance KPI</td>
<td>13</td>
</tr>
<tr>
<td>Create a Hierarchy</td>
<td>14</td>
</tr>
<tr>
<td>To create a hierarchy in the Patients table</td>
<td>14</td>
</tr>
<tr>
<td>Create additional Hierarchies</td>
<td>15</td>
</tr>
<tr>
<td>Deploy the Model</td>
<td>15</td>
</tr>
<tr>
<td>To configure the deployment properties</td>
<td>15</td>
</tr>
<tr>
<td>To deploy the model</td>
<td>16</td>
</tr>
<tr>
<td>Conclusion</td>
<td>16</td>
</tr>
<tr>
<td>Next Steps</td>
<td>17</td>
</tr>
<tr>
<td>Quickly visualize your solution from an end user perspective</td>
<td>17</td>
</tr>
<tr>
<td>Other SSAS Tabular Data Model Topics</td>
<td>17</td>
</tr>
<tr>
<td>Sources</td>
<td>17</td>
</tr>
</tbody>
</table>
Creating a Data Model (SSAS Tabular)

Create a New Tabular Model Project

To create a new tabular model project

1. In SQL Server Data Tools, on the File menu, click New, and then click Project.
2. In the New Project dialog box, under Installed, click Business Intelligence, then click Analysis Services, and then click Analysis Services Tabular Project.
3. In Name, type a unique name for your new data model, then specify a location for the project files. For our demo we’ll use the name Healthcare Claims Tabular Model.
4. Click OK.
5. In the Tabular model designer dialog box, in Workspace server, type <The-Name-of-your-SSAS-Tabular-Instance> which identifies the SQL Server 2016 Analysis Services instance where you have server development permissions, and then click Test Connection.
 a. Note: While you are creating your project the the workspace server instance you specify will host a Tabular model database with the same name as your project.
6. In Compatibility level, verify SQL Server 2016 (1200) is selected, and then click OK.
Create a Connection and Import Data

Connect to our datasource

Note: For our example we'll use the CCCD-Healthcare database as our datasource.

1. In SQL Server Data Tools, click on the Model menu, and then click Import from Data Source.
2. In the Table Import Wizard, under Relational Databases, click Microsoft SQL Server, and then click Next.
3. In the Connect to a Microsoft SQL Server Database page, in Friendly Connection Name, type SQLChi Test DB from DW.
4. In **Server name**, type `<The-Name-of-your-Database>` (or the name of the server containing the database that you are connecting to).
 a. Note: Try to always type the name of the server that you are connecting to. Refrain from using the drop down list option as the application will attempt to search for every instance of sql server available on your network which could take a significant amount of time.
5. In the **Database name** field, click the down arrow and select **CCCD-Healthcare** (or the name of the database that you are importing data from), and then click **Next**.

6. In the **Impersonation Information** page, you need to specify the credentials Analysis Services will use to connect to the data source when importing and processing data (contact your Database Administrator if instruction are needed for this step).
7. In the **Choose How to Import the Data** page, verify **Select from a list of tables and views to choose the data to import** is selected. You want to select from a list of tables and views, so click **Next** to display a list of all the source tables in the source database.
8. In the **Select Tables and Views** page, select the checkbox for the following views:
a. **HealthCareClaims**
b. **HealthCareDoctors**
c. **HealthCarePatients**
 Note: These views utilize the "dm" schema.

9. We want to give the tables in the model more easily understood names.
 a. Click on the cell in the **Friendly Name** column for **HealthCareClaims**. Rename the table to **Claims**.
 b. Click on the cell in the **Friendly Name** column for **HealthCareDoctors**. Rename the table to **Doctors**.
 c. Click on the cell in the **Friendly Name** column for **HealthCarePatients**. Rename the table to **Patients**.

Table Import Wizard

Select Tables and Views
Select the tables and views that you want to import data from.

<table>
<thead>
<tr>
<th>Source Table</th>
<th>Schema</th>
<th>Friendly Name</th>
<th>Filter Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HealthCareClaims</td>
<td>dbo</td>
<td>Claims</td>
<td></td>
</tr>
<tr>
<td>HealthCareDoctors</td>
<td>dbo</td>
<td>Doctors</td>
<td></td>
</tr>
<tr>
<td>HealthCarePatients</td>
<td>dbo</td>
<td>Patients</td>
<td></td>
</tr>
<tr>
<td>TestPatients&Doctors</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWICARE</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWINSTI</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWAMEDPA</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWPHAPA</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWPHARM</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWPROCE</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWREVEN</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWSNIPS</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TestDoctors</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TestPatients</td>
<td>dbo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: To remove specific columns from the model Select the table and then click the “Preview and Filter” button. In the Preview and Filter window you can specify whether there are columns that you do not want to include in your model.
Note: Only use Import From Data Source once per connection (database). After you've imported tables/views from your data source and need to use it again, click on the Model menu, and then click Existing Connections. Here you’ll find the connections that you previously created available for reuse.

11. While importing the data, the wizard displays how many rows have been fetched. When all the data has been imported, a message indicating success is displayed.

12. Click Close.
13. The wizard closes and the model designer is visible. Each table has been added as a new tab in the model designer.

Save the Model Project

It is important to frequently save your model project.
To save the model project
- In SQL Server Data Tools, click on the File menu, and then click Save All.

Review Existing Relationships and Add New Relationships

A relationship is a connection between two tables that establishes how the data in those tables should be correlated.

When you imported data by using the Table Import Wizard, you imported three tables from the CCCD-Healthcare database. Generally, if you import data from a relational source, existing relationships are automatically imported together with the data. However, before you proceed with authoring your model you should verify those relationships between tables were created properly. For this tutorial, you will also add two new relationships.

To add new relationships between tables

1. In SQL Server Data Tools, click on the Model menu, then point to Model View, and then click Diagram View.
2. Using the Claims table, click and hold on the ProviderID column, then drag the cursor to the ProviderID column in the Doctors table, and then release.
 a. A solid line appears showing you have created an active relationship between the ProviderID column in the Claims table and the ProviderID column in the Doctors table.
3. Using the Patients table, click and hold on the RecipientID column, then drag the cursor to the RecipientID column in the Claims table, and then release.
 a. A solid line appears showing you have created an active relationship between the RecipientID column in the Patients table and the RecipientID column in the Claims table.
4. In the Patients table, click and hold on the PrimaryProviderID column, then drag the cursor to the ProviderID column in the Doctors table, and then release.
 a. A dotted line appears showing you have created an inactive relationship between the ProviderID column in the Patients table and the ProviderID column in the Doctors table. You can have multiple relationships between tables, but only one relationship can be active at a time.
To review existing relationships

- Option 1: In SQL Server Data Tools, click on the **Table** menu, then click **Manage Relationships**.
 - The Manage Relationships dialog box shows the relationships that were either automatically created when you imported data or created manually.
 - Using this dialog box you can add/view/edit a relationship’s active/inactive status, its relationship cardinality (many-to-one, one-to-one) and its filter direction.

- Options 2: In SQL Server Data Tools, click on the **Model** menu, then point to **Model View**, and then click **Diagram View**.
 a. The model designer now appears in Diagram View, a graphical format displaying all of the tables you imported with lines between them. The lines between tables indicate the relationships that were automatically created when you imported the data.
 b. Use the minimap controls in the lower-right corner of the model designer to adjust the view to include as many of the tables as possible. You can also click and drag tables to different locations, bringing tables closer together, or putting them in a particular order. Moving tables does not affect the relationships already between the tables. To view all of the columns in a particular table, click and drag on a table edge to expand or make it smaller.
Create a Calculated Column

A calculated column is a column created by a DAX formula that creates a value by calculating data that already exists in the model.

Create a Month Calendar calculated column in the Patients table

1. In SQL Server Data Tools, click the Model menu, then point to Model View, and then click Data View.
 a. Calculated columns can only be created by using the model designer in Data View.
2. In the model designer, click the Patients table (tab).
3. Right-click the EmailAddress column header, and then click Insert Column.

4. A new column named Calculated Column 1 is inserted to the left of the EmailAddress column.
5. In the formula bar above the table, type the following formula. AutoComplete helps you type the fully qualified names of columns and tables, and lists the functions that are available.
 a. =IF([HomePhone] =BLANK(),BLANK(),"HM: " & [HomePhone] &" ") &
 IF([MobilePhone] =BLANK(),BLANK(),"MB: " & [MobilePhone] &" ")&
 IF([WorkPhone] =BLANK(),BLANK(),"WK: " & [WorkPhone] &" ")
 b. When you have finished building the formula, press ENTER.
c. Values are then populated for all the rows in the calculated column. If you scroll down through the table, you will see that rows can have different values for this column, based on the data that is in each row.

6. Rename this column to **PhoneNumbers**.

The PhoneNumbers calculated column provides a sortable name for all Patient Phone Numbers.

<table>
<thead>
<tr>
<th>Table</th>
<th>Calculated Column name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claims</td>
<td>Year</td>
<td>=Year([AdjudicatedDt])</td>
</tr>
<tr>
<td>Claims</td>
<td>Month</td>
<td>=Month([AdjudicatedDt])</td>
</tr>
<tr>
<td>Claims</td>
<td>Day</td>
<td>=DAY([AdjudicatedDt])</td>
</tr>
<tr>
<td>Patients</td>
<td>FullAddress</td>
<td>=([AddressLine1]&", ",[City]&", ",[State]&" ",[ZipCode])</td>
</tr>
</tbody>
</table>

Create additional calculated columns in the indicated table(s):

Create a Measure

Similar to the calculated columns you created in the previous lesson, a measure is essentially a calculation created using a DAX formula. However, unlike calculated columns, measures are evaluated based on a user selected *filter*; for example, a particular column or slicer added to the Row Labels field in a PivotTable. A value for each cell in the filter is then calculated by the
applied measure. Measures are powerful, flexible calculations that you will want to include in almost all tabular models, to perform dynamic calculations on numerical data.

To create a Daily Average Number of Claims measure in the Claims table
1. In the model designer, click the Claims table.
2. If an empty measure grid does not already appear beneath the table, click on the Table menu, and then click Show Measure Grid.
3. In the measure grid, click the top-left empty cell.
4. In the formula bar, above the table, type the following formula:
 a. **Total Claims:=DISTINCTCOUNT([DCN])**
 b. When you have finished building the formula, press ENTER.

<table>
<thead>
<tr>
<th>Measure name</th>
<th>Table</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Avg Claims</td>
<td>Claims</td>
<td>Daily Avg Claims:=[Total Claims]/DISTINCTCOUNT([Day])</td>
</tr>
<tr>
<td>Last Service Date</td>
<td>Claims</td>
<td>Last Service Date:=Max([ServiceThruDt])</td>
</tr>
<tr>
<td>Total Providers</td>
<td>Doctors</td>
<td>Total Providers:=DISTINCTCOUNT([ProviderID])</td>
</tr>
<tr>
<td>Total Dr Claims</td>
<td>Doctors</td>
<td>Total Dr Claims:=CALCULATE([Total Claims],Doctors[ProviderID])</td>
</tr>
<tr>
<td>Total Patients</td>
<td>Patients</td>
<td>Total Patients:=DISTINCTCOUNT([PatientProfileID])</td>
</tr>
</tbody>
</table>
Create Key Performance Indicators

Key Performance Indicators (KPIs) are used to gauge performance of a value, defined by a Base measure, against a Target value, also defined by a measure or by an absolute value. In reporting client applications, KPIs can provide business professionals a quick and easy way to understand a summary of business success or to identify trends.

To create a Daily Average Claims Performance KPI

1. In the model designer, click the Claims table (tab).
2. In the measure grid, right-click the Daily Avg Claims measure, and then click Create KPI.
 a. The Key Performance Indicator dialog box opens.
3. In the Key Performance Indicator (KPI) dialog box, in Target, select the Absolute Value option.
4. In the Absolute Value field, type 125, and then press ENTER.
5. In the left (low) slider field, type 50, and then in the right (high) slider field, type 100.
6. In Select Icon Style, select the first (red), (yellow), (green) icon type.
7. Click OK to complete the KPI.
Create a Hierarchy

Hierarchies are metadata that define relationships between two or more columns in a table, thus defining the relative position of column to another column.

To create a hierarchy in the Patients table
1. In the model designer, click on the Model menu, then point to Model View, and then click Diagram View.
2. Right-click the Patients table, and then click Create Hierarchy. A new hierarchy appears at the bottom of the table window.
3. In the hierarchy name, rename the hierarchy by typing Locations, and then press ENTER.
4. In the Patients table, right click the State column, in the pop up box go to Add to Hierarchy and then click Locations.
5. In the Patients table, click the City column, then drag it to the Locations hierarchy, releasing it below State.
6. In the Patients table, click the ZipCode column, then drag it to the Locations hierarchy, releasing it below City.
7. In the Patients table, click the Address column, then drag it to the Locations hierarchy, releasing it below ZipCode .
8. In the Locations hierarchy, right-click the ZipCode column, then click Rename, and then type Zip.
9. Note: Ensure that the columns in the hierarchy are in logical order. Typically the column with the least uniqueness (based on business) should be near the top of the list and the column with the highest uniqueness (based on the business) should be near the bottom of the list.
Create additional Hierarchies

In the Patients table create a hierarchy named ContactInfo. Add the following columns to the hierarchy in the order listed:

1. FullAddress
2. PhoneNumbers
3. EmailAddress

In the Doctors table create a hierarchy named OfficeLocations. Add the following columns to the hierarchy in the order listed:

1. State
2. City
3. ZipCode (rename this object to “Zip”)

Deploy the Model

To configure the deployment properties:

1. In SQL Server Data Tools, in Solution Explorer, right-click on the Healthcare Claims Tabular Model project, and then in the context menu, click Properties.
2. In the Healthcare Claims Tabular Model Property Pages dialog box, under Deployment Server, in the Server property, type the name of the target Analysis
Services instance running in Tabular mode. This will be the instance your model will be deployed to.

3. In the **Database** property, type **Healthcare Claims Tabular Model**.
4. In the **Model Name** property, type **SQL CHI Healthcare Claims Tabular Model**.
5. Verify your selections and then click **OK**.

To deploy the model

1. In SQL Server Data Tools, click the **Build** menu, and then click **Build Healthcare Claims Tabular Model**.
2. In SQL Server Data Tools, click the **Build** menu, and then click **Deploy Solution**.
3. The Deploy dialog box appears and displays the deployment status of the metadata as well as each table included in the model.

4. When deployment successfully completes, go ahead and click **Close**.

Conclusion

Congratulations!
You are finished authoring and deploying your first Analysis Services Tabular model. This tutorial has helped guide you through completing the most common tasks in creating a tabular model. Now that your Healthcare Claims Tabular Model is deployed, you can use SQL Server Management Studio to manage the model; create process scripts and a backup plan. Users can connect to the model using a reporting client application such as Microsoft Excel or Power View.
Next Steps

Quickly visualize your solution from an end user perspective

There are many tools that can share and enhance your Tabular data models:

- SSRS,
- MS Excel,
- PowerPivot,
- PowerBI,
- Tableau,
- etc...

With SQL Server Data Tools you can quickly view your tabular model in MS Excel

1. In SQL Server Data Tools, click the **Model** menu, and then click **Analyze in Excel**.
2. When the Analyze in Excel dialog box opens, click **OK**.
3. MS Excel opens, creates a connection to your data model and creates a PivotTable in MS Excel. In the PivotTable Fields pane you’ll see all of the objects (tables, columns, calculated columns, measures, KPI’s and hierarchies,) that you created in your data model. You can then select and/or drag and drop objects to begin analyzing your data model.

Other SSAS Tabular Data Model Topics

Below you’ll find a list of items/topics not mentioned in this presentation that are important to creating and managing SSAS Tabular Data Models.

- **Roles**: Creating and managing SSAS Tabular Roles - which define member permissions for a model.
- **Perspectives**: Creating and managing SSAS Tabular Perspectives - which define viewable subsets of a model that provide focused, business-specific, or application-specific viewpoints of the model.
- **Partitions**: Creating and Managing SSAS Tabular Partitions - which divide a table into logical parts.
- **DAX**: Creating custom formulas and expressions with Data Analysis Expressions (DAX).

Sources

- [Tabular Modeling](#)
- [Care Coordination Claims Data - Illinois.gov](#)
○ The database used in this demo is based on the test healthcare data set made public by I-HFS.